

<u>IMSAD</u>

3. International Quality in Construction Summit 2011

Istanbul November 2011 Dr. Sabine Fisbeck-Groh, BASF SE Sustainability Center

BASF – The Chemical Company The worldwide leading group in Chemistry business

- Our products are applied to nearly all industries
- We combine economical success with social responsibility and protection of our environment
- Turnover 2010: 63.873 Mio. €
- EBIT 2010: 7.761 Mio. €
- Employees (12/31/2010): 109.140
- Approximately 1.100 new patents applied
- 6 Verbund sites and approximately 390 production sites

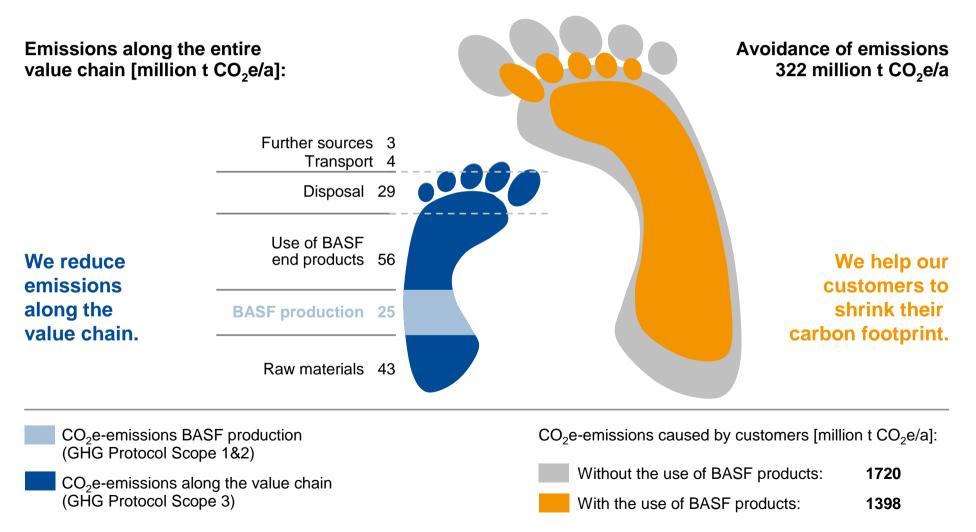
Integration of the three pillars

D BASF The Chemical Company

Sustainable Development

What does Sustainable Development mean?

The Chemical Company


Sustainability is not a static condition but something one needs to strive for

Continuous improvement

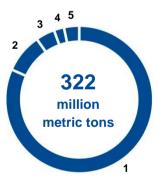
BASF takes action: BASF's Corporate Carbon Footprint 2010

D - BASF

BASF takes action: Products for climate protection

We spend around one third of our research and development expenditures on developing new energy efficiency and climate protection solutions.

In 2010, we generated 12% of our sales with our climate protection products*.

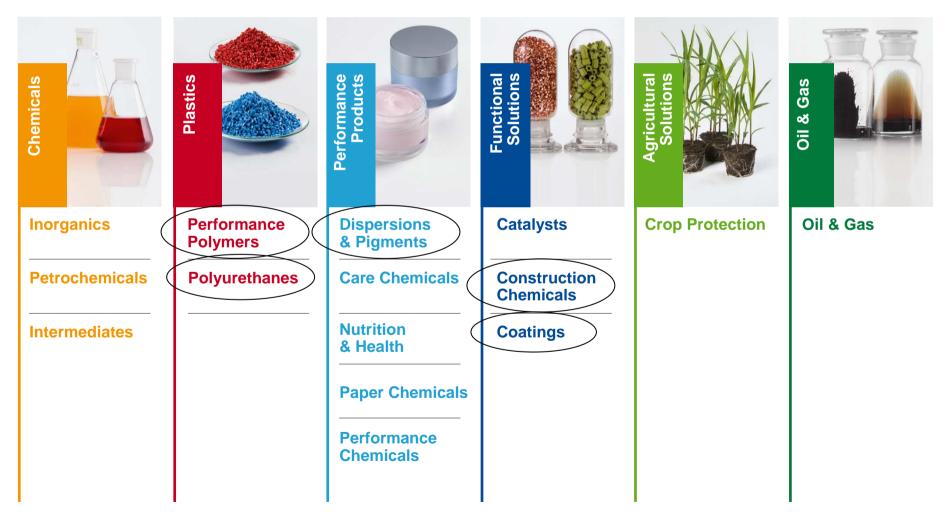

Examples of our products for climate protection:

- Insulation material
- Cement additives
- Fuel additives
- Industrial catalysts

Avoidance of greenhouse gas emissions through the use of BASF products by sector

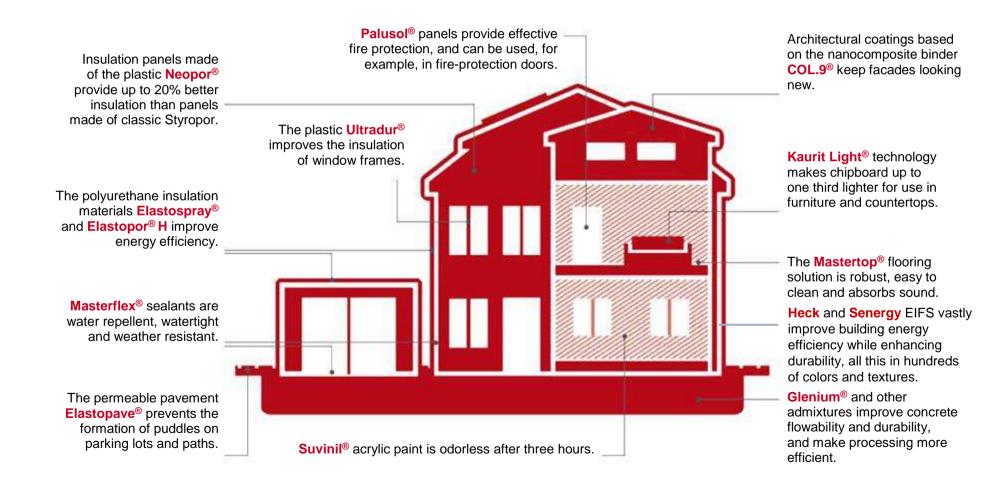
(in million metric tons of CO₂-equivalent)

1	Housing and construction	263
2	Industry	28
3	Transport	14
4	Agriculture	7
5	Other	10



The Chemical Company

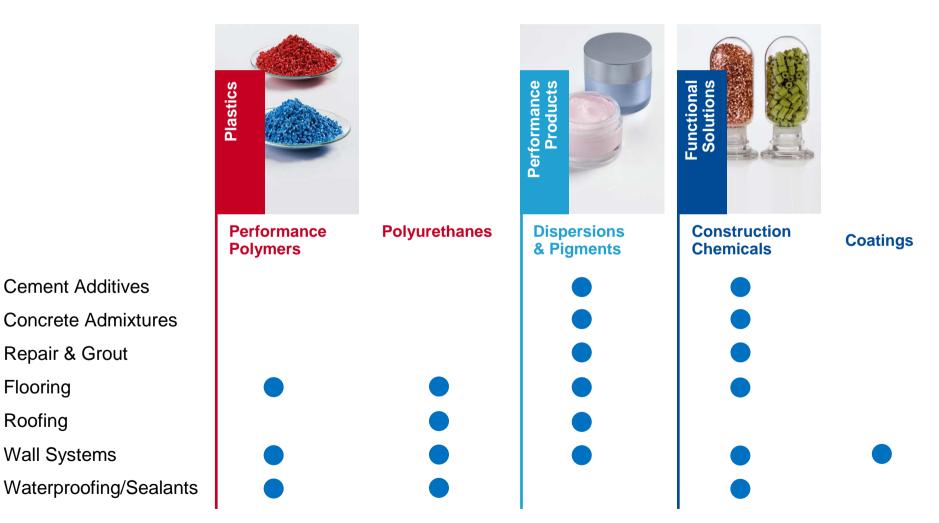
* Climate protection products are product groups that when used avoid at least twice as much CO₂ as is emitted during their production and disposal.


BASF Segments – Relevance for Construction

D BASF The Chemical Company

BASF takes action: BASF products for houses

D BASF The Chemical Company



Examples of Cross-BU Value Chains

Flooring

Roofing

D • BASF The Chemical Company

9

Fit of Value Chains into Megatrends

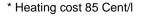
D - BASF The Chemical Company

Systems Construction

Green Building

Energy Efficiency

Design & Style


Health & Comfort


Cement Additives			0	0		0
Concrete Admixtures	•		•	•		
Repair & Grout	•	0	O			
Flooring			0		•	
Roofing			•			
Wall Systems		O	Ċ			
Waterproofing/Sealants	•	•				

BASF takes action: Fewer CO₂ emissions and no heating costs

Ludwigshafen – zero-heating cost house

- Comprehensive construction concept
- Thermal insulation with Neopor[®]
- Triple-glazed windows
- Solar cells to generate hot water on the southern side
- Photovoltaic panels on the roof to generate electricity
 Modernizing an 100 m² apartment
- Modernizing an 100 m² apartment to a 7 liter standard can save
 - 1,300 liters of heating oil a year *
 - 3.9 tons of CO₂ emissions a year

🗖 = BASF

Value Chain Concrete Admixtures – Examples of Topics

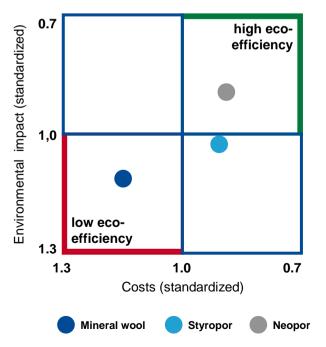
BASF

Major Influence:	Owner Specifier	BASF	Concrete producer	Contractor		Exemplary! Not Complete!	
	Planning/ Designing	Raw Materials	Production	Distribution/ Transport	Construction Process	Use Phase	Retrofit/ Replace- ment
GHG emissions	'Green sense' concrete –		'Green sense' concrete – sustainability		Impact on GHG emissions		
Energy use	sustainability ratings		ratings		Reduce energy for heat curing		
Water scarcity and pollution			Save water during concrete production				
Waste and air pollution			Concrete with recycled aggregates	Pollution through transport			
Product Stewardship & Safety		Toxicity (e.g. formaldehyde…)					
Biodiversity & renewables		Renewable resources, bio- based resources	Reduce raw material extraction				Reduce landfill
Labour & human rights, human capital development							
Resource consumption	High strength -> reduced material consumption		High strength -> reduced material consumption			Improved durability	
Traceability							

Tools for Sustainable Development

D BASF The Chemical Company

Eco-Efficiency Analysis


- Strategic instrument for internal decisions, developed by BASF
- Economic and environmental advantages and disadvantages of products and processes are jointly considered and compared
- Entire life cycle taken into account
- Over 450 Analysis
- Higher eco-efficiency means greater customer benefits with respect to costs and environmental burden

SEEBALANCE®

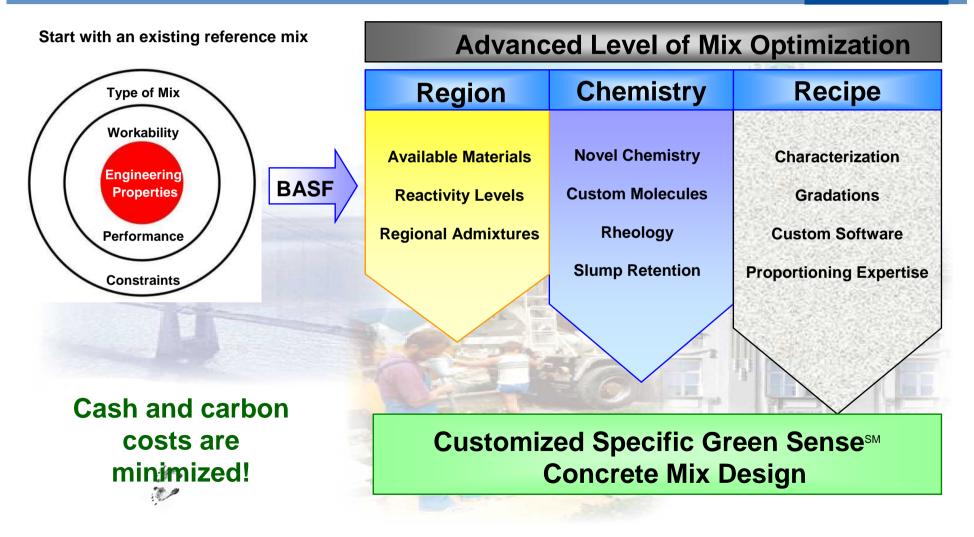
Integrated assessment of economic, environmental and social aspects of products and processes

Customer benefit from using 1m² of thermal insulation composite system

Eco-Efficiency Analysis of thermal insulation composite systems based on the example of the 3-liter house in the Brunck district of Ludwigshafen in 2000, confirmed by Germany's Öko-Institut Freiburg. The method was validated from Technical Inspection Association (TÜV).

Speeding up concrete hardening

The Chemical Company

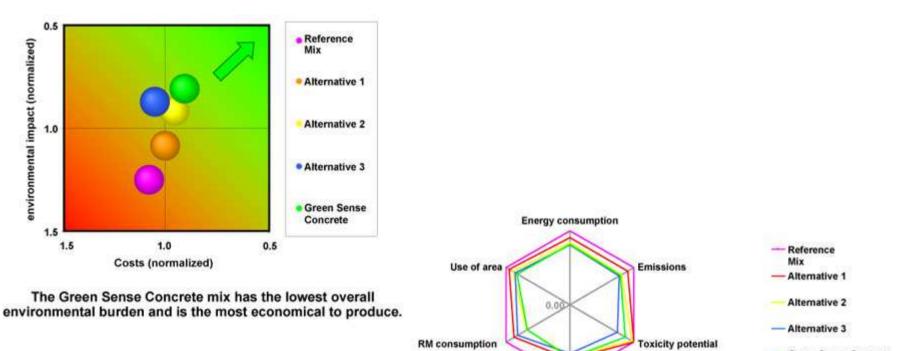

X-SEED[®] - a unique hardening accelerator and core product of the Crystal Speed Hardening[™] concept speeds up concrete hardening significantly at early ages (6-12 hours) at low, ambient and heat curing temperature

- More efficient processes
- Material optimization, reduction of CO₂ emissions
- Lower energy consumption
- High quality specifications

Eco Profile Manager: Example Green SenseSM Concrete

D = BASF The Chemical Company

Green SenseSM Concrete: Cusomized Mix Optimization

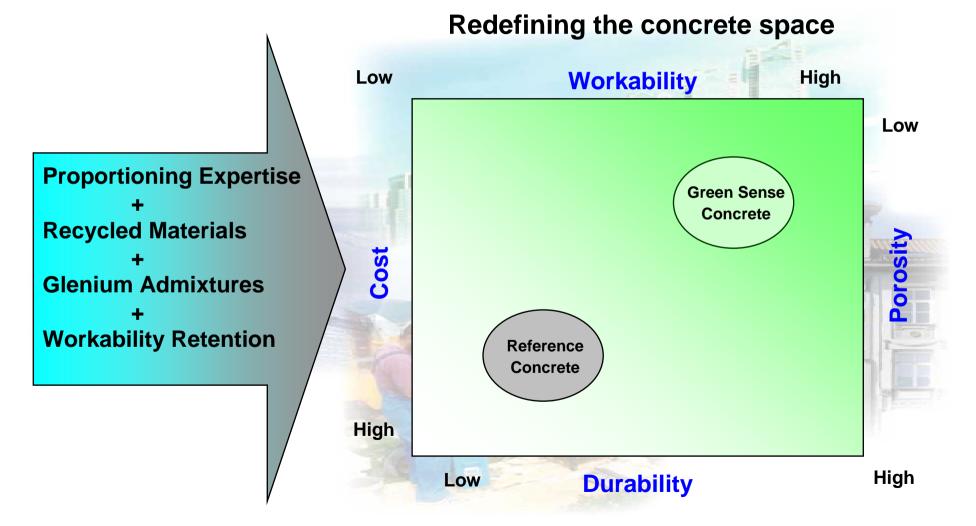

- Sustainability threats to the concrete industry include
- Cement production carbon emissions
- Energy Intensity/Usage
- Natural Resource Depletion
- Health noise, particulate emissions etc.
- Water Quality

Green SenseSM concrete Customized mix optimization

Supplementary cementious materials and non-cementious fillers are used with BASF chemical admixtures to meet or exceed performance targets.

Green SenseSM Concrete: Eco Efficiency Portfolio and Fingerprint

The Chemical Company



- Green Sense Concrete

The four concrete alternatives are shown to be progressively more environmentally preferable in relation to the Reference Mix.

Risk potential

Advanced Concrete Technology

Green SenseSM Concrete Benefits

Producer	Contractor
 Optimized and economical concrete composition costs Faster truck discharge time –better fleet utilization Desired setting time, slump retention, and strength performance No water needed at jobsite – less performance issues/callbacks due to water addition – reduced claim potential 	 High flowable slump concrete Good workability, pumpability and finishing characteristics Faster placement and production Consistent concrete performance
Owner	Environmental Agencies/Community
 Desired durability performance Lower shrinkage and cracking potential Contributes towards LEED credits 	 Less cement used per unit of concrete produced and, therefore, less energy and CO₂ emission Less by-product materials targeted for landfill Lower overall environmental impact

BASE

Tools for Sustainable Development

Performance Measures Strategic Analysis Customer Relations Supplier Relations and Risk Management Eco-Efficiency Audit: Audit: Success – Analysis Environment Quality Added Value through Health Safety Sustainability Environment Safety Health protection Social Performance Social standards Assessment Supplier Days

Eco-Efficiency Analysis Existing Environmental Categories

The Chemical Company

Environmental impact over the entire life cycle*

Consumption of Energy	Emissions	Toxicity Potential	Risk Potential	Consumption of Raw Materials	Land Use
 Cumulative energy utilization plus remaining energy content Fossil and renewable resources are included 	 Described by categories Air Water Solids 	 Definition for hazardous materials used by EU law Maximum possible hazard used 	 Risk assessment approach Based on published statistical data (e.g. NACE codes or insurance associations) 	Materials are weighted according to reserves and global consumption	 Index calculated by assessment criteria and impact factors

*Data acquisition and calculation is done according to ISO 14040 and 14044 (ecological part)